Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
نویسندگان
چکیده
This paper proposes a novel sampling-based adaptive bounding evolutionary algorithm termed SABEA that is capable of dynamically updating the search space during the evolution process for continuous optimization problems. The proposed SABEA adopts two bounding strategies, namely fitness-based bounding and probabilistic sampling-based bounding, to select a set of individuals over multiple generations and leverage the value information from these individuals to update the search space of a given problem to improve the solution accuracy and search efficiency. To evaluate the performance of this method, SABEA is applied on top of the classic differential evolution (DE) algorithm and a DE variant, and SABEA is compared to a state-of-the-art Distribution-based Adaptive Bounding Genetic Algorithm (DABGA) on a set of 27 selected benchmark functions. The results show that SABEA can be used as a complementary strategy for further enhancing the performance of existing EA algorithms and it also outperforms the DABGA method. Moreover, a practical problem, namely the model calibration for an agent-based simulation, is used to further evaluate SABEA. The results show SABEA’s applicability to diverse problems and its advantages over the traditional genetic algorithm-based calibration method and the DABGA method.
منابع مشابه
Adaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 382-383 شماره
صفحات -
تاریخ انتشار 2017